MATH 155 - Chapter 9.10 - Taylor and Maclaurin series:
Dr. Nakamura

1. Theorem: Uniqueness Theorem

Let f(z) = Z an,x" represent a power series for all z in an open interval I containing a. Then
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2. Definition: (Taylor Series and Maclaurin Series) If a function f has derivatives of all orders
at x = ¢, then the series
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is called the Taylor series for f(z) at a. Moreover, if ¢ = 0, then the series is the Maclaurin
series for f.

3. Theorem: Convergence of Taylor Series

If lim R, =0 for all z in the interval I, then the Taylor series for f converges and equals f(x),
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4. Theorem: Binomial Series

For any real number k and for |z| < 1,
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where
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(we read C¥ as "k choose n.”)
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The radius of convergence is R = 1, and hence, the interval of convergence is (—1,1).

5. Guidelines for Finding a Taylor Series

1. Differentiate f(x) several times and evaluate each derivative a a. Try to recognize the pattern in
these numbers.
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2. Use the sequence developed in the first step to form the Taylor coefficients a, = fT(a) and
determine the interval of convergence for the resulting power series.

3. Within this interval of convergence, determine whether or not the series converges to f(x).



